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Abstract 

The goal of natural language understanding computer systems is to 
analyze and make use of the information contained in English or other 
natural language discourse. Understanding texts that discuss complex 
pieces of equipment, such as Navy equipment failure reports (CASREPs), 
requires the possession not only of general knowledge about the types of 
objects and predicates in the domain, but also detailed knowledge about the 
particular equipment in question. This more expert level of knowledge is 
needed to dereference the names and descriptions of equipment referred to 
in the text, and to infer their causal relations and operational states when 
these are only implicitly expressed by the message writer. Knowing the 
structural configuration of the equipment is useful in both tasks, and a 
structural domain model can be extracted readily from equipment manuals 
and their accompanying parts lists, thus easing the "knowledge acquisition 
bottleneck" problem and making practical applications more feasible. 

Introduction 
CASREPS (Casualty Reports) are Navy messages reporting shipboard 

equipment failures and attempts at their diagnosis and repair. Although 
consisting primarily of information formatted into fixed fields, these reports 
also include narrative English text describing and amplifying on the for- 
matted portion of the message. The informational content of these narra- 
tive portions is typically unavailable to conventional data processing sys- 
tems. 

The goal of natural language understanding (NLU) computer systems is 
to analyze and make use of the information contained in English or other 
natural language discourse. At the Navy Center for Applied Research in 
Artificial Intelligence, we have been addressing the task of analyzing the 
free text in CASREP messages and formatting it into an application-neutral 
form suitable for inferencing, information retrieval, and other Artificial 
Intelligence (AI) tasks. We take a computational linguistic approach to 
this analysis, subjecting each input sentence in turn to lexical lookup, pars- 
ing against a broad-coverage English grammar, enforcement of domain 
semantic constraints, syntactic regularization, and finally mapping to a 
framelike (i.e. slot-filler) semantic representation. 

The application task we have been exploring in recent years is the 
automated highlighting of important information in the narrative portion of 
CASREPs. The Navy employs a team of contractors whose task is to gen- 
erate a short textual extract of each CASREP message for use in failure 
trend analysis, and our goal was to attempt to extract the same information 
by automated means. Since the human-generated extracts rarely contained 
text that was not present in the original narrative, but usually restated one 
or more clauses selected from the message, we took the same approach. 
Our system modeled "importance" as a series of saliency ratings on such 
information types as causality, results of investigation, and malfunction. 
Those clauses containing the greatest amount of salient information were 
chosen for inclusion in the extract 

Our first prototype system, called SUMMARY [6,7], could extract only 
sentence-local causal and failure information — that is, information recov- 
erable from lexical and syntactic content. Hence the system could recog- 
nize the lexical item erratic as connoting a failure, and could normalize the 
syntactic structure X be due to Y into Y cause X. It also contained a few 
rules for extracting such information by inference (again only on a local 
basis), such as recognizing that X impaired Y entails that Y is in a failed 
state and that X caused that failure to occur, and then inferring that X must 
be in an undesirable state as well. 
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SUMMARY could not make use of intersentential context in perform- 
ing its inferences, however. One important role of narrative discourse 
structure is to implicitly convey causal relationships between assertions. 
The message writer seeks to communicate a coherent account of a series of 
related events, and the reader uses knowledge of the domain to recover the 
causal relations implicit in the sequence of statements contained in the nar- 
rative. Such domain knowledge is often represented in NLU systems as 
scripts [9], which are stereotypical descriptions of common event 
sequences. To establish these interconnections the reader must also use 
general principles of discourse structure, to resolve the referents of pro- 
nouns, decide when two noun phrases are referring to the same entity, and 
analyze sentence fragments and other elliptical phenomena. 

The only causal relationship that SUMMARY deemed important to 
include in the CASREP extract was the causing of one equipment malfunc- 
tion by another. Such events tend to be highly idiosyncratic rather than 
stereotypical, so scripts are not an appropriate knowledge representation for 
their analysis. We also do not believe that a generic description of various 
types of equipment and their functionality suffices for the kind of inferenc- 
ing needed. Instead, we feel that the reader of an equipment failure mes- 
sage must rely on a certain amount of expert knowledge of the structure, 
operation and behavior of the particular equipment in question. Our next 
version of the text extraction system, called TERSE [10], included a model 
of the piece of equipment (a diesel-driven air compressor used to start a 
gas turbine engine) that was the topic of our CASREP message set. 
TERSE also contains routines for using the model to analyze complex part 
names and descriptions, resolve multiple references to the same piece of 
equipment, and confirm implicit discursive causal relations. The system 
was built in Intellicorp's KEE system development shell and runs on a 
Symbolics LISP machine and a Sun workstation. 

Much has been said about the "knowledge acquisition bottleneck" that 
is the bane of large knowledge-based systems. The Starting Air Compres- 
sor (SAC) discussed in our message set is only one of hundreds of pieces 
of shipboard equipment for which CASREPs are issued. If TERSE was to 
be a system the Navy could truly use, then the domain models for all this 
equipment would have to be kept reasonably simple. In this light, we 
wanted to experiment with whether a strictly structural or topological 
equipment model — which could be constructed directly from equipment 
manuals and accompanying parts lists — would be useful in our message 
extraction task. This paper describes the structural equipment model we 
developed for TERSE, the interaction of domain and discourse knowledge 
in the dereferencing of equipment part names and recovery of causal/state 
information, and an informal evaluation of this approach's merits and 
drawbacks. 

Contextual Knowledge 
Message 1 in Fig. 1 gives the complete text of a CASREP narrative 

remark of medium length. Our pilot system SUMMARY (without an 
equipment model) chose the last sentence Splines were extensively worn as 
its extract, since that sentence contains a part name (spline) in association 
with a lexical item (worn) that clearly connotes damage to the part. The 
contractor-generated extract contains that sentence as well, but also 
includes the preceding sentence Drive shaft was found to rotate freely at 
the SSDG end. SUMMARY did not recognize rotate freely as connoting a 
failure, since on a sentence-local basis the semantics of freely are ambigu- 
ous — indeed, human subjects we presented with that sentence out of con- 
text disagreed whether it represented a positive or negative condition. It is 
only in the context of the final sentence of the message that rotate freely 
can be disambiguated: the shaft's splines are worn, erosion of a moving 
part can result in malfunction, and therefore rotating freely is (in this par- 
ticular context) a failure. 

Several types of contextual knowledge are required to understand the 
implications   of  this   message.    First  there  is   domain-specific  world 



Message 1 
SAC received high usage during two BECCE periods. 
CCS received a report that LO pressure was dropping. 
Alarm sounded. 
Loud noises were coming from the drive end during coast down. 
Drive shaft was found to rotate freely at the SSDG end. 
Splines were extensively worn.  

Message 2 
Starting air regulating valve failed. 
Unable to consistently start nr lb gas turbine. 
Valve parts excessively corroded. 

Message 3 
While conducting operational checks, experienced engagement 

malfunction. 
Discovered that the engine drive adapter hub internal splines had 

sheared, causing the SAC to fail to engage. 
Spline shaft rcvd w/assist from DESRON 8. 
Installed on #3 SSDG. 
Tested sal on 25 Feb. 

Message 4 
Loss of lube oil pressure during operation number 2 SSDG. 
Metal particles found in lube oil filter.  

Fig. 1.  Example SAC CASREP narratives 

knowledge, needed to identify the components of the SAC that can be 
described by the noun shaft and determine which of these can be referred 
to by the more specific compound nominal drive shaft. It also includes the 
knowledge that splines are a physical feature of many different pieces of 
equipment like shafts and gears, that there is more than one alarm in the 
system, that the trigger condition for one of those (the lube oil alarm) is a 
drop in oil pressure, that one drive shaft has splines and is located at the 
SSDG end of the SAC, and that lube oil pressure is maintained by an oil 
pump that receives its power indirectly from that shaft. 

Second, there is the discourse knowledge that the drive end and the 
SSDG end are elliptical references to physical locations on some object 
described earlier in the message. Discourse principles also predict that a 
splined object must have been referred to earlier in the message to resolve 
the referentially ambiguous splines of the last sentence, and that the mes- 
sage context can similarly be used to disambiguate the noun phrases alarm 
and drive shaft. 

Finally there is the scriptal knowledge that the narrative message is 
describing a sequence of related events, usually time-ordered: background 
history (sentence 1 of the example), failure events (sentences 2-3), and 
findings (sentences 4-6). Descriptions of event history tend to preserve 
order of causality: the drop in lubricating oil pressure caused the alarm to 
sound. Troubleshooting descriptions, however, usually proceed from inter- 
mediate findings to specific causes: there were noises, which turned out to 
be caused by the shaft rotating freely, which in turn was found to be 
caused by worn splines. 

The equipment model is the world-knowledge source for TERSE, and 
routines for noun phrase dereferencing and semantic disambiguation consti- 
tute the discourse component. Finally, some of the heuristics we use in 
inferring intersentential causal implications can be considered an extremely 
simple form of scriptal knowledge, but aside from that, the system does 
not yet do script analysis or temporal processing. We will explore each of 
these in turn. 

The Equipment Model 
The TERSE equipment model is constructed using frames, or typed 

slot-filler structures organized into an inheritance hierarchy. Each slot 
represents either an attribute of the piece of equipment, or a relationship of 
the equipment to other components. Many frame-oriented natural language 
understanding systems use a technique of dynamic instantiation to interpret 
the meaning of phrases. For example the noun phrase lube oil pump shaft 
might trigger the creation of new instances of the shaft, pump and lube- 
oil frames, with a pointer from the -.supercomponent slot of the first 
instance to the second, and a pointer from the -.processed-subslance slot of 
the second to the third. The resulting representation is equivalent to the 
generic knowledge about equipment that we ourselves had when first 
beginning to read and try to understand SAC CASREPS: oil can lubricate. 

shafts can be part of pumps, and pumps can process oil. Without specific 
knowledge about the way in which the various components of the 
compressor are interconnected, however, we found it difficult to understand 
many of the causal implications of the messages. 

A second approach — the one we have taken in the present work — is 
to build a priori a completely instantiated model consisting of the com- 
ponents known to comprise the equipment in question, derived from equip- 
ment manuals and parts lists. The process of understanding the noun 
phrase lube oil pump shaft then consists of exploring the model for a 
configuration of frame instances that has the slot-filler structure just 
described. Such a model can incorporate specific information about how 
this particular pump fits into the overall architecture of the compressor and 
other associated equipment This level of knowledge corresponds to the 
expertise of a reader familiar with the particular domain, and permits 
increased and more accurate inferencing. 

The drawback to our approach is that a new equipment model must be 
constructed in detail for each new domain of CASREP being processed. 
Once frames have been developed describing the various generic com- 
ponents (such as pumps and shafts), however, a structure editor or similar 
front-end tool can make the instantiation process less painful. In construct- 
ing the Starting Air Compressor model, we found a need to incorporate 
only 85 of the 350 individual components listed in the Navy equipment 
manuals. Those 85 included all the primary functional elements of the 
compressor, bottoming out at indivisible parts such as gears, hubs and 
shafts. The remaining 265 items were low-level accessory items like pins, 
bolts and washers that did not contribute substantially to a basic functional 
understanding of the equipment's behavior. Fig. 2 illustrates two nodes in 
the SAC equipment model, linked to each other via their :input-from and 
:output-to slots. 

Unit <sac> = 
:name shaft driven air centrifugal compressor 
dsa compressor 
:partno 681950-1-1 
:aka SAC 
:input-from <ssdg> 
:output-to <gas-turbine-engine> 
:processed-substance <starting-air> 
:supercomponent <starting-air-system> 
xomponents <start-air-valve>, <oil-supply-section>.. 

Unit <gas-turbine-engine> = 
.•name gas turbine engine 
:isa turbine-engine 
:partno LM2500 
:aka GTE, GTRB, GTM 
function propulsion 
:input-from <sao 
:supercomponent <propulsion-system> 
:fuel <natural-gas>   

Fig. 2.  Sample Frame Instances 

Noun Phrase Dereferencing 

The first task in using an equipment model for natural language under- 
standing is to establish a link from each equipment-naming phrase in the 
message to the equipment model node it denotes. In a technical domain 
like mechanical equipment, complex nominals frequently occur, composed 
from various combinations of premodifiers (typically adjectives and nouns, 
but sometimes possessives and numbers) and postmodifiers (usually prepo- 
sitional phrases), for example 

ship's turbine start air system 
muffler assembly body end flange 
discharge hose from surge air valve assembly 
low speed coupling from diesel to SAC lube oil pump 
number 4 SAC 21 inch woven cotton covered rubber surge air hose 

It is also clear from the message data that writers often do not refer to 
pieces of equipment by their proper Navy-manual names, but instead use a 
variety of descriptive naming conventions, as seen in the following refer- 
ences to the drive shaft part: 

shaft drive shaft 



compressor shaft 
spline shaft 
SAC input shaft 
input drive shaft 
SAC input drive shaft 
SAC spline input drive shaft 
581732-1 

SAC shaft 
input shaft 
SAC drive shaft 
input spline shaft 
spline drive shaft 
splined input drive shaft 
connecting shaft 

It would not have been wise to attempt to provide TERSE with synonym 
lists for each part, since new data would be likely to present unanticipated 
new references, and system robustness was a top priority. 

In general the problem of noun phrase analysis is a difficult issue. 
This is largely because of the prevalence in such phrases of "vague predi- 
cates" such as the N-N or noun-noun relation {muffler assembly body end 
flange) and ambiguous prepositions like with and from {discharge hose 
from surge air valve assembly). These relations cannot be successfully 
analyzed in general predicate-argument terms, but require world knowledge 
to be understood. 

In a constrained domain, however, the problem is greatly simplified 
since the number of choices is much reduced. Left modifiers in equipment 
names fill only a limited set of semantic roles, and it is these roles that the 
slots of the model units capture. For instance, since there are at most six 
ways in the TERSE equipment model in which two units can be linked 
together, there are correspondingly only six ways in which one part name 
can be an N-N modifier of another: as its :supercomponent (pump shaft), 
components (spline shaft), :input-from (diesel hub), :output-to (ring gear 
hub), :processed-substance (oil pump), or :fuel (gas turbine). The a priori 
modeling approach simplifies matters even more since it requires that a 
noun phrase be more than just semanticaDy well-formed (capable of instan- 
tiation) to be accepted, but match an existing configuration in the model. 
Although it is reasonable that the phrase ring gear hub could refer to a 
gear hub that is ring-shaped, for example, no such piece of equipment 
exists in the SAC model, permitting that analysis to be rejected. 

Noun phrase dereferencing proceeds in two stages in TERSE. First, 
the noun phrase is structurally analyzed by a parser that, interleaved with 
the equipment model, incrementally develops a set of candidate referents 
for the components of the phrase. Second, if the fully analyzed noun 
phrase turns out to be ambiguous (has a referent set containing more than 
one candidate), disambiguation techniques are used to select the most 
acceptable of the choices. 

Structural Analysis 

A semantic grammar (one defined using domain-specific categories 
rather than general lexical and syntactic ones) is used in the structural 
analysis of equipment nominals, to take advantage of natural constraints in 
the domain. Each word in the CASREP lexicon is assigned to one or 
more semantic word classes that have been derived semi-automatically by 
distributional analysis of a corpus of message texts [8]. For example, in 
the SAC CASREP domain the verb reveal tends to co-occur with words 
like investigation, inspection, troubleshooting, and test in Subject position 
(as in the sentence Investigation revealed no SAC rotation), so this set of 
words is assigned the semantic category invest, all referring to investiga- 
tory acts of some sort. The semantic word classes part, func(tion), 
prop(erty), and status serve as the preterminals of the equipment-name 
grammar, shown in Fig. 3. For example this grammar will analyze the 
phrase lube oil pump as a UNIT in two different ways: 

(EQUIP 
(ATOM (*FUNC lube)) 
(EQUIP (UNIT (EQUIP (»PART oil)))(EQUIP (*PART pump))))) 

(EQUIP 
(UNIT (EQUIP (ATOM (*FUNC lube))(EQUIP (*PART oil)))) 
(EQUIP (»PART pump)))) 

where in the first analysis lube incorrectly modifies oil pump, whereas in 
the second analysis it correctly modifies oil. 

The structural analysis is done by an augmented context-free syntactic 
analyzer, the PROTEUS parser [3]. The augmentations take the form of 
restrictions that test for various well-formedness conditions whenever par- 
ticular nodes are constructed. In TERSE, the restrictions enforce semantic 
constraints by consulting the equipment model during the parse to see if 
the node just composed can be interpreted as one or more units in the 

<UNIT> ::= <EQUIP> | <PROPERTY>. 
<EQUIP> ::= <*PART> | ( <ATOM> | <UNIT> ) <EQUIP>. 
<PROPERTY> ::= <*PROP> | 

( <EQUIP> | <*STATUS> ) <PROPERTY>. 
<ATOM> ::= <*FUNC> | <*STATUS>.          

Fig. 3.  Equipment Nominal Grammar 

model. If successful, the node is assigned a node attribute called referent- 
set containing pointers to those units, and the node is added to the parser's 
working memory for further possible use; if unsuccessful, the node is 
pruned from the parser's search space and never needs to be reconsidered. 

Three of TERSE's most useful restrictions (and the grammar produc- 
tions after which they are applied) are as follows: 

1. VALID-EQUIP (after EQUIP ::= *PART): 
loop for unit in model do 

if either unit is in class PART 
or the part-number of unit is PART 
or an acronym of unit is PART 
then add unit to the referent-set attribute of the present node 

if referent-set return true else return false 

2. VALID-ATOM-MODIFIER {alter EQUIP ::= ATOM EQUIP): 
loop for unit in referent-set of element EQUIP do 

if some slot of unit contains ATOM 
then add unit to the referent-set attribute of the present node 

if referent-set return true else return false 

3. VALID-UNIT-MODIFIER {after EQUIP :.= UNIT EQUIP): 
loop for unit-1 in referent-set of element UNIT do 

loop for unit-2 in referent-set of element EQUIP do 
if either unit-2 is a subcomponent of unit-1 

or unit-2 is-directly-connected-to unit-1 
or some other slot of unit-2 contains unit-1 

then add unit-2 to the referent-set attribute of the present node 
if referent-set return true else return false 

Restriction 1 represents the simplest case: it accepts LO and 23699 as 
minimal equipment names for the <lube-oil> unit because they are respec- 
tively :aka (acronym) and -.partno values of the unit, and it interprets oil as 
the referent set {<lube-oit>, <diesel-oit>J because both those units have 
oil as an :isa ancestor in the sort hierarchy. Restriction 2 analyzes lube oil 
as unit <lube-oil> by taking the referent set of the head noun oil (found by 
Restriction 1 earlier in the parse) and keeping only that member of the set 
that has lube as a ^function slot filler, thus discarding <dicsel-oiI>. Res- 
triction 3 accepts pump shaft because one model unit matched earlier by 
the head noun shaft has a isupercomponent link to one unit (<oil-pump>) 
matched by the modifier pump, and that shaft (<oiI-pump-shaft>) becomes 
the referent of the compound nominal. 

Recursive application of these rules allows a wide variety of nominals 
to be understood as references to the same piece of equipment For exam- 
ple the frame instances shown in Fig. 2 understand all the following ways 
of referring to the starting air compressor: 

681950-1-1 
air compressor 
GTRB SAC 
LM2500 start air compressor 

compressor 
SAC 
starting air compressor 
gas turbine SAC 

Because the grammar allows the restrictions to incrementally reject 
subphrases of a noun phrase during the parse, the search space is pruned in 
an efficient manner. While parsing the noun phrase lube oil pump shaft, 
for example, the rejection of the incorrect ("lube oil-pump") analysis of 
the first three words of the phrase means that node is no longer available 
to conjoin with the head noun shaft, so one less parse of the entire phrase 
needs to be generated and tested. Based on the unaugmented grammar 
alone, there are 14 possible parses of the complete phrase lube oil pump 
shaft, such as "a shaft that pumps lube oil" (just as start air check valve 
is a valve that checks start air). By the time the augmented parser is ready 
to build analyses for the entire phrase, however, twelve of the 14 have 
already been ruled out by earlier consultations of the model. 

Contextual Disambiguation 



Frequently the model-based interpretation process described in the pre- 
vious section returns an ambiguity set of several possible referents for a 
noun phrase. This is the result of underspecification by the message 
writer, who expects the reader to use other information in the message 
context to resolve the reference. This information generally consists of 
prior references, either to the same or to semantically related entities. In 
Message 2 of Fig. 1, the valve in the underspecific phrase valve parts is 
intended to be «»referential with the entity that was more fully specified in 
the first sentence of the narrative, starting air regulating valve. Similarly, 
in Message 1 of Fig. 1 the undersperified name alarm is expected to be 
understood as the lube oil pressure alarm and the name splines as drive 
shaft splines, in both cases based on semantic information in the sentence 
preceding the reference. 

Coreference is the simpler phenomenon to handle: roughly speaking, if 
one member of an ambiguous referent set is found to have already been 
referred to earlier in the discourse, then it can be chosen as the object of 
the ambiguous reference. Resolving the second type of underspecification 
requires that the prior referent be only semantically related to (not identical 
with) the ambiguous one. The maintenance of a focus list [1] is a compu- 
tational linguistic method often used for dealing with such referential ambi- 
guities. This is a list of entities that have already been referred to in such 
a way that they can serve to resolve later ambiguous references. Tech- 
niques such as spreading activation or marker-passing [4] can be used with 
the focus list to determine semantic relationships between the prior and 
later referents. 

We initially chose to design a more heavily model-based rather than 
linguistically justified disambiguation algorithm for TERSE. In our 
approach, ambiguous references can be resolved not only by unambiguous 
prior referents (either identical or related), but with the aid of ambiguous 
ones, and indeed by later referents as well, both ambiguous and unambigu- 
ous. This is done by generalizing the process to one of nearest-neighbor 
clustering in the equipment model network. Just as the links in the equip- 
ment model are used to interpret individual noun phrases, they can also be 
used to establish semantic relations between candidate referents. The algo- 
rithm is as follows. 

Each candidate in each ambiguity set is compared pairwise with every 
other unit referred to in other clauses of the message, even those that are 
themselves ambiguous candidates. For each of these pairs, the model is 
traversed to determine if the two units are connected by any combination 
of links (such as :input-from or -.components). If such a chain of one or 
more links is found, a certainty metric associated with each candidate is 
incremented by the inverse of one plus the length of the chain (identity 
counts as a chain of length zero), so that candidates closely connected in 
the model to other referents have their scores boosted more than those dis- 
tantly related. In addition, the algorithm weights the clauses by how 
widely separated they are from each other in the message text. For 
instance, a semantically related object referred to in the clause immediately 
before a candidate wiU be given greater consideration than one mentioned 
earlier. At completion, the candidate with the highest certainty score in 
each ambiguity set is chosen as the referent of its noun phrase. 

A simple example is illustrated in Message 3 of Fig. 1. In this 
instance all part references {engine drive adapter hub internal splines, 
SAC, and SSDG) are unambiguous except for spline shaft, which matches 
four objects in the model. The disambiguation routine generates the score 
matrix shown in Fig. 4, where each row is a candidate referent for spline 
shaft and each column is a unit referred to in the message. The <drive- 
shaft> candidate gets the highest score, primarily because it is more 
closely linked in the equipment model to the <SSDG> and <drive- 
adapter-hub-spline> units than are the other three shafts. Had one or 
more of the other referring expressions in the message also been ambigu- 
ous, a row and column for each additional candidate referent would have 
been provided as well. 

SPLINES SAC SSDG TOTAL 

DRIVE SHAFT 0.83 0.83 0.83 2.50 

GEAR SHAFT 0.50 0.83 0.64 1.98 

COUPLING DRIVE SHAFT 0.47 0.83 0.62 1.93 

WHEEL SHAFT 0.40 0.75 0.57 1.72 

Fig. 4.  Disambiguation score matrix 

Model-Based Inferencing 
Applied to Message 2 of Fig. 1, the dereferencing procedures have 

disambiguated starting air regulating valve in the first sentence by finding 
that one of those valves has a short chain of :output-to links to the <gas- 
turbino referenced in the second sentence, and they have also determined 
that valve parts in the final sentence refers to components of the 
aforementioned valve. The part-whole and functional-connectivity links 
that were used in both equipment nominal interpretation and disambigua- 
tion are now used in recovering implicit causal and state information from 
the message. 

Since the valve, its components, and the engine are all known to be in 
a negative state, the reader is led to suspect that the writer is implying 
causal relationships among the three predications. Discourse structure 
alone cannot determine the flow of causality from one predication to the 
next, since sentence order in CASREPs can connote either order of failure 
events (forward flow) or order of investigation findings (typically back- 
ward flow). The reader instead must rely on domain knowledge to make 
the inferences, and TERSE attempts to duplicate this behavior through four 
heuristics. 

The first heuristic involves the partitioning of state-predicating words 
into an ordered sequence of three groups, which we call damage, failure 
and loss. Damage includes such words as corrode, shear, wear, and 
erode. Failure words connote decreased equipment functionality and 
include low, slip, drop and seize. Finally, loss connotes loss of equipment 
usage by ship personnel and includes words like loss, inoperative and 
unable. Our test data suggest that inferable causality in CASREPs flows 
from members of one group to members of the same or a subsequent 
group, but not the other direction. Hence it is more likely that the corro- 
sion of the valve parts (damage) caused the failure of the valve (failure) 
than the other way around, and that each of these in turn caused the inabil- 
ity to start the engine (loss). One can certainly devise counterexamples to 
this heuristic, but in our CASREP message corpus the rule works remark- 
ably well nonetheless. 

The second heuristic prefers flow of malfunction causality from com- 
ponent to supercomponent (assembly) rather than the inverse. This again 
leads to the inference that the corrosion of the valve parts caused the valve 
failure. Again one can think of counterexamples such as a failed valve 
allowing salt water in to corrode its parts, but since the flow of causality 
from assembly to component is so much rarer than its opposite, in such 
cases the writer would probably not permit the causality to remain merely 
implicit in discourse structure but would spell it out explicitly. In our 
SAC CASREP corpus of 182 messages there is only one instance in which 
the malfunction of a part (the slippage of a drive shaft) resulted in damage 
to its components (grinding down of its splines), and that causal relation- 
ship was spelled out explicitly — otherwise the simpler inference would 
have been that the ground splines caused the slippage. 

The third heuristic prefers flow of malfunction causality from func- 
tional input to functional output. This leads to the inference that the valve 
failure caused the inability of the turbine to start, since the latter piece of 
equipment can be reached from the former by a series of :output-to links. 
The counterexample to this heuristic in the equipment world is a blockage 
state in which flow of energy or material is impeded by a failure down- 
stream, causing it to "back up" and cause failure or damage upstream. 
Since such situations do occur with some frequency in the SAC CASREP 
domain, blockage words like seize and clog have to be given special con- 
sideration in the system. 

The fourth and final model-based inferencing rule is used in the disam- 
biguation of equipment status. The only CASREP datum we have found 
so far that requires this rule is the word freely in the Message 1 of Fig. 1, 
so the rule is still ad hoc and probably requires refinement At present the 
rule states that if a clause containing an ambiguous status word can be 
inferred to be both a cause and an effect of other malfunctions stated in the 
message, then assume that the clause does connote a malfunction itself. 
Since interpreting drive shaft rotate freely as a malfunction allows it to be 
seen both as a result of the worn splines and a cause of the oil pressure 
dropping (since there is an :output-to chain from the shaft to the oil 
pump), the rule decides \hnt freely should be interpreted as a malfunction. 

It must be kept in mind that the function of these heuristic rules is to 
recover causal and state information deliberately implied by the message 
writer, not to do fault diagnosis (i.e. hypothesize causal relations that the 
message writer does not believe and is not trying to convey).  The writer's 



motivation for leaving certain information implicit is that the inferences the 
reader must use to recover that information are easy ones, at least if the 
reader is sufficiently expert. This is one of our main reasons (the other is 
the knowledge acquisition problem) for experimenting with simple model- 
ing techniques and inferencing rules. 

Discussion 
The TERSE equipment model is strictly structural or "topological" in 

that it does not attempt to model equipment behavior per se, either qualita- 
tively or quantitatively. The model knows that the Starting Air Regulating 
Valve processes air, that its function can be referred to as regulate, and 
that the valve's output goes to the gas turbine engine. However it does not 
know what the token "regulate" means, what the valve's behavior is (to 
partially open or shut), or what attributes the valve imparts to the air 
(increase or decrease in volume/pressure). The model only assumes that if 
the valve malfunctions in any way, the valve's output will also "fail" 
somehow, causing both its parent supercomponents as well as the next 
component downstream to have impaired functionality. 

Although this approach was satisfactory because of constraints peculiar 
to the SAC CASREP domain and the application task, we increasingly felt 
the need to add pieces of behavioral knowledge to the system to solve 
problems such as blockage events (flow of malfunction from output to 
input) and message references to specific attributes (such as temperature 
and pressure) that the equipment imparts to its processed substances. Had 
the SAC contained feedback loops, behavioral knowledge would also have 
become necessary to decide which component of the loop was being 
claimed by the message writer to be the initial source of a malfunction: the 
overheating of an engine might conceivably cause a fan belt to slip, but it 
is much more plausible that a loose fan belt would cause an engine to 
ovemeat In short, knowing the kind of malfunction that has occurred is 
often critical in determining its possible consequences. 

Recent related work [5] has taken the approach of developing a full 
simulation model for text understanding. Such a model can be used not 
only in the information extraction task we have been addressing but also 
other aspects of language understanding, as well as interfacing with diag- 
nostic or tutorial systems. Our approach instead concentrates particularly 
on trying to represent the knowledge that an expert reader possesses about 
equipment, rather than a model of the equipment itself. Of course, since 
machinery is a human artifact, a simulation of a machine's behavior can to 
a great extent mirror the knowledge that an expert has about that behavior. 
The need to add behavioral information to our model was certainly leading 
us in the direction of qualitative modeling [2], although a full simulation 
model was more powerful than was needed for our application. For exam- 
ple, given Message 4 of Fig. 1, a simulation model would still not be able 
to resolve whether the loss of pressure was caused by the particles clog- 
ging the filter, or by mechanical damage elsewhere in the system (which 
the particles are evidence of), since the writer does not seem to be making 
a clear claim for either interpretation. 

The disambiguation algorithm we developed may be more generalized 
than is necessary, and on large messages the pairwise comparison of 
referents might become prohibitively expensive (this has not proven to be 
the case so far, however). The use of a focus list, and constraining the 
context to backward references (and a limited class of forward references), 
may suffice to resolve ambiguous equipment nominals in CASREPs. For 
example, traditional discourse principles would immediately accept starting 
air regulating valve in Message 2 of Fig. 1 as an unambiguous coreferent 
for valve later in the message, whereas our algorithm gives the possible 
«»reference a high score but then continues to accept other disambiguating 
contextual information as well. 

Summary 
We have tried to show that domain-specific knowledge is required to 

recover implicit references to causality from narrative texts that describe 
equipment failures. Generic knowledge about equipment is not enough, 
since expert knowledge of the architecture of the particular machinery 
under discussion is needed to trace the flow of functionality (and thus mal- 
functionality) from one component to another. The same body of domain 
knowledge can be used in the dereferencing of equipment-denoting noun 
phrases (both local semantic interpretation and disambiguation based on 
discourse context), and the recovery of implicit causal references. 

Since each CASREP reports on an individual failure event that typi- 
cally has only a single root cause, and the message writer will only leave a 
causal reference implicit if its recovery requires simple inferencing by an 
expert reader, extremely deep domain knowledge (such as would be 
needed for diagnosis, a related but different task) is not necessary in the 
information extraction task. The purely structural information that can be 
gleaned from equipment manuals and parts lists, combined with a set of 
heuristic inferencing rules, works correctly in the majority of cases. 
Extending this knowledge in the direction of a behavioral (simulation) 
model, however, does increase a natural language understanding system's 
accuracy and robustness as well as its possible applications. 
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